Near-Term Diagnostics

Improvements

Needed For

Reliability and Performance

Enhancements

Storage Ring Diagnostics (MS#1)

- 1. Broadband rf BPM System hardware -
 - Unreliable fast beam history module
 - Boxcar averager occasionally misbehaves
 - Boxcar averager is a bad digital filter
 - Cost-benefit analysis of various upgrade paths in progress
- 2. Rogue microwave mode -
 - affects vertical readbacks on large aperture (42 mm x 84 mm) vacuum chambers

- 3. Xbpms upgrade -
 - Need to upgrade translation stages not reliable in few cases
 - Need to redesign P2 ID x-bpm blade geometry
 - Design of x-bpms for dual-undulator sources
- 4. Centering of the beam in BPLD window
 - to reduce beam trips
- 5. Eliminate bunch train gap
 - Study in progress to fill 24 bunches

- 6. S35-ID and BM Photon Diagnostics
 - Complete installation and commission of Cryogenic monochromator
 - Make ID divergence and source beam image available on-line
 - Develop high resolution x-ray imaging
 - Maintain and upgrade 35 BM pin-hole camera
 - Support injection study, capturing single bunch image
 - Develop in-tunnel pin-hole camera
 - Maintain/upgrade bunch purity measurement
 - Make energy-spread measurement

Beam Stability (MS#2)

- 1. Implement "Data Pool" IOC
 - Allow "DC" orbit correction at 20 50 Hz,
 - Feedforward on ID gaps will become practical, reducing transient effects to other users
- 2. Implement ID x-bpms into DC orbit correction
- 3. Integrate x-bpms and narrowband bpm's data into RTFB (1.5 kHz) system

- 4. Implement ID and BM x-ray bpm's for steering
- 5. Complete complement of narrowband bpms
- 6. Regulate rf frequency with RTFB system to eliminate 360 Hz phase modulation sideband
- 7. Regulate coupling
- 8. Develop user interface screen to provide Beamline Source point data

Injector Diagnostics (MS #3 and #4)

1. Linac BPM's Front-End Electronics

- Not modularized
- Unreliable and difficult to repair/maintain
- Development of prototype in progress

2. LTP and BTS BPM's

- Front-end electronics (printed circuit) not matched with SL signal,
- Poor performance, noise level upto 0.5 mm
- Present design causes problems for interleave and Top-up
- A prototype in test in BTS line

- 3. Linac and transport line flags
 - Present chromox screen has poor resolution/ response time
 - Limited field of view, calibration issues
 - CID Cameras are aging and have control issues
 - Upgrade discussions are in progress
 - Goal is to provide several non-destructive flags for Linac
 - BTS needs quantitative diagnostis flags for matching

Develop Non-Intercepting Injector Photon Diagnostics

- Will allow to observe beam parameters during injection -could be a key diagnostics to maintain high injection efficiency in top-up mode
- 1. Non-interceptive measurements of Linac Beam
 - Make use of OSR from BC chicane bend
 - Provide beam Centroid and Size measurements
 - Provide capability of bunch to bunch data

- 2. Non-intercepting measurements of BTS beam
 - Make use of ODR technique, beam through/by aperture, slits, edges
 - Or use OTR technique by inserting thin foil
 - Provide beam Centroid and Size measurements
- 3. Ring Septum Flag
 - A thin flag for minimal (injection-through) intercepting monitor